Voltage-gated K+ channels at an early stage of chronic hypoxia-induced pulmonary hypertension in newborn piglets.
نویسندگان
چکیده
Our purpose was to determine whether smooth muscle cell membrane properties are altered in small pulmonary arteries (SPA) of piglets at an early stage of pulmonary hypertension. Piglets were raised in either room air (control) or hypoxia for 3 days. A microelectrode technique was used to measure smooth muscle cell membrane potential (E(m)) in cannulated, pressurized SPA (100- to 300-microm diameter). SPA responses to the voltage-gated K(+) (K(V)) channel antagonist 4-aminopyridine (4-AP) and the K(V)1 family channel antagonist correolide were measured. Other SPA were used to assess amounts of K(V)1.2, K(V)1.5, and K(V)2.1 (immunoblot technique). E(m) was more positive in SPA of chronically hypoxic piglets than in SPA of comparable-age control piglets. The magnitude of constriction elicited by either 4-AP or correolide was diminished in SPA from hypoxic piglets. Abundances of K(V)1.2 were reduced, whereas abundances of both K(V)1.5 and K(V)2.1 were unaltered, in SPA from hypoxic piglets. At least partly because of reduced amounts of K(V)1.2, smooth muscle cell membrane properties are altered such that E(m) is depolarized and K(V) channel family function is impaired in SPA of piglets at an early stage of chronic hypoxia-induced pulmonary hypertension.
منابع مشابه
Sildenafil and an early stage of chronic hypoxia-induced pulmonary hypertension in newborn piglets.
Devising therapies that might prevent the onset or progression of pulmonary hypertension in newborns has received little attention. Our major objective was to determine whether sildenafil, a selective phosphodiesterase inhibitor, prevents the development of an early stage of chronic hypoxia-induced pulmonary hypertension in newborn pigs. Another objective was to determine whether sildenafil cau...
متن کاملUpregulation of vascular calcium channels in neonatal piglets with hypoxia-induced pulmonary hypertension.
Inhibition of voltage-gated, L-type Ca(2+) (Ca(L)) channels by clinical calcium channel blockers provides symptomatic improvement to some pediatric patients with pulmonary arterial hypertension (PAH). The present study investigated whether abnormalities of vascular Ca(L) channels contribute to the pathogenesis of neonatal PAH using a newborn piglet model of hypoxia-induced PAH. Neonatal piglets...
متن کاملJAP-01337-2004 R.1 Thromboxane inhibition reduces an early stage of chronic hypoxia-induced pulmonary hypertension in piglets
The pulmonary vasoconstrictor, thromboxane, may contribute to the development of pulmonary hypertension. Our objective was to determine if a combined thromboxane synthase inhibitor/receptor antagonist, terbogrel, prevents pulmonary hypertension and the development of aberrant pulmonary arterial responses in newborn piglets exposed to 3 days hypoxia. Piglets were maintained in room air (control)...
متن کاملThromboxane inhibition reduces an early stage of chronic hypoxia-induced pulmonary hypertension in piglets.
The pulmonary vasoconstrictor, thromboxane, may contribute to the development of pulmonary hypertension. Our objective was to determine whether a combined thromboxane synthase inhibitor-receptor antagonist, terbogrel, prevents pulmonary hypertension and the development of aberrant pulmonary arterial responses in newborn piglets exposed to 3 days of hypoxia. Piglets were maintained in room air (...
متن کاملExhaled NO is reduced at an early stage of hypoxia-induced pulmonary hypertension in newborn piglets.
Altered nitric oxide (NO) production could contribute to the pathogenesis of hypoxia-induced pulmonary hypertension. To determine whether parameters of lung NO are altered at an early stage of hypoxia-induced pulmonary hypertension, newborn piglets were exposed to room air (control, n = 21) or 10% O(2) (hypoxia, n = 19) for 3-4 days. Some lungs were isolated and perfused for measurement of exha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 291 6 شماره
صفحات -
تاریخ انتشار 2006